首页> 外文OA文献 >A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model
【2h】

A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model

机译:用于模拟大气观测上游影响的近场工具:随机时间倒置拉格朗日输运(sTILT)模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce a tool to determine surface fluxes from atmospheric concentration data in the midst of distributed sources or sinks over land, the Stochastic Time-Inverted Lagrangian Transport (STILT) model, and illustrate the use of the tool with CO2 data over North America. Anthropogenic and biogenic emissions of trace gases at the surface cause large variations of atmospheric concentrations in the planetary boundary layer ( PBL) from the "near field," where upstream sources and sinks have strong influence on observations. Transport in the near field often takes place on scales not resolved by typical grid sizes in transport models. STILT provides the capability to represent near-field influences, transforming this noise to signal useful in diagnosing surface emissions. The model simulates transport by following the time evolution of a particle ensemble, interpolating meteorological fields to the subgrid scale location of each particle. Turbulent motions are represented by a Markov chain process. Significant computational savings are realized because the influence of upstream emissions at different times is modeled using a single particle simulation backward in time, starting at the receptor and sampling only the portion of the domain that influences the observations. We assess in detail the physical and numerical requirements of STILT and other particle models necessary to avoid inconsistencies and to preserve time symmetry (reversibility). We show that source regions derived from backward and forward time simulations in STILT are similar, and we show that deviations may be attributed to violation of mass conservation in currently available analyzed meterological fields. Using concepts from information theory, we show that the particle approach can provide significant gains in information compared to conventional gridcell models, principally during the first hours of transport backward in time, when PBL observations are strongly affected by surface sources and sinks.
机译:我们介绍了一种根据土地上分布的源或汇中的大气浓度数据确定表面通量的工具,即随机时间倒置拉格朗日输运(STILT)模型,并说明了该工具在北美的CO2数据中的使用。人为和生物源性地表气体的排放导致“近场”引起的行星边界层(PBL)中大气浓度的较大变化,上游源和汇对观测的影响很大。近场运输通常以运输模型中典型的网格尺寸无法解决的规模进行。 STILT提供了表示近场影响的功能,可以将这种噪声转换为可用于诊断表面发射的信号。该模型通过跟踪粒子集合的时间演变,将气象场插值到每个粒子的亚网格规模位置,来模拟运输。湍流运动由马尔可夫链过程表示。之所以能够实现显着的计算节省,是因为使用单个粒子模拟在时间上向后追溯了在不同时间上游排放的影响,该模拟从接收器开始,仅采样影响观测结果的那部分区域。我们详细评估了STILT和其他粒子模型对物理和数值的要求,这些要求可避免不一致并保持时间对称性(可逆性)。我们显示出从STILT中的后退和前进时间模拟得出的源区域是相似的,并且我们表明偏差可能归因于当前可用的已分析气象学领域中违反质量守恒的行为。使用信息论的概念,我们表明,与传统的网格单元模型相比,粒子方法可以提供大量的信息收益,主要是在向后传输的最初几个小时内,此时PBL观测受到地表源和汇的强烈影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号